

TOAST

Contents:

	Introduction
	Data Organization

	Workflow

	Support for Specific Experiments

	Installation
	Compiled Dependencies

	Python Dependencies

	Using Configure

	Testing the Installation

	Utilities
	Environment Control

	Logging

	Vector Math Operations

	Random Number Generation

#workflow.rst
#data.rst
#tod.rst
#intervals.rst
#noise.rst
#pointing.rst
#sim.rst
#maptools.rst
#timing.rst
#nersc.rst
#dev.rst

Indices and tables

	Index

	Module Index

	Search Page

Introduction

TOAST is a software framework [https://en.wikipedia.org/wiki/Software_framework] for simulating and processing timestream data collected by telescopes.
Telescopes which collect data as timestreams rather than images give us a unique set of analysis challenges.
Detector data usually contains noise which is correlated in time as well as sources of correlated signal from the instrument and the environment.
Large pieces of data must often be analyzed simultaneously to extract an estimate of the sky signal.
TOAST has evolved over several years.
The current codebase contains an internal C++ library to allow for optimization of some calculations, while the public interface is written in Python.

The TOAST framework contains:

	Tools for distributing data among many processes

	Tools for performing operations on the local pieces of the data

	Generic operators for common processing tasks (filtering, pointing expansion, map-making)

	Basic classes for performing I/O in a limited set of formats

	Well-defined interfaces for adding custom I/O classes and processing operators

The highest-level control of the workflow is done by the user, often by writing a small Python “pipeline” script (some examples are included). Such pipeline scripts make use of TOAST functions for distributing data and then call built-in or custom operators to process the timestream data.

Data Organization

The TOAST framework groups data into one or more “observations”. Each observation represents data from a group of detectors for some time span. Detectors in the same observation must have the same number of samples for the length of the observation. We currently also assume that the noise properties of the detectors are constant across this observation (i.e. the noise is stationary). A TOAST “dataset” is simply a collection of one or more observations.

Workflow

Example: Satellite

Example: Ground-Based

Support for Specific Experiments

If you are a member of one of these projects:

	Planck

	LiteBIRD

	Simons Array

	Simons Observatory

	CMB-S4

Then there are additional software repositories you have access to that contain extra TOAST classes and scripts for processing data from your experiment.

Installation

TOAST is written in C++ and python3 and depends on several commonly available
packages. It also has some optional functionality that is only enabled if
additional external libraries are available.

Compiled Dependencies

TOAST compilation requires a C++11 compatible compiler as well as a compatible
MPI C++ compiler wrapper. You must also have an FFT library and both FFTW and
Intel’s MKL are supported by configure checks. Additionally a BLAS/LAPACK
installation is required.

Several optional compiled dependencies will enable extra features in TOAST.
If the Elemental library [http://libelemental.org/] is found at configure
time then internal atmosphere simulation code will be enabled in the build.
If the MADAM destriping mapmaker [https://github.com/hpc4cmb/libmadam] is
available at runtime, then the python code will support calling that library.

Python Dependencies

You should have a reasonably new (>= 3.4.0) version of python3. We also require
several common scientific python packages:

	numpy

	scipy

	matplotlib

	pyephem

	mpi4py (>= 2.0.0)

	healpy

For mpi4py, ensure that this package is compatible with the MPI C++ compiler
used during TOAST installation. When installing healpy, you might encounter
difficulties if you are in a cross-compile situation. In that case, I
recommend installing the repackaged healpix here [https://github.com/tskisner/healpix-autotools].

There are obviously several ways to meet these python requirements.

Option #0

If you are using machines at NERSC, see nersc.

Option #1

If you are using a linux distribution which is fairly recent (e.g. the
latest Ubuntu version), then you can install all the dependencies with
the system package manager:

%> apt-get install fftw-dev python3-scipy \
 python3-matplotlib python3-ephem python3-healpy \
 python3-mpi4py

On OS X, you can also get the dependencies with macports. However, on some
systems OpenMPI from macports is broken and MPICH should be installed
as the dependency for the mpi4py package.

Option #2

If your OS is old, you could use a virtualenv to install updated versions
of packages into an isolated location. This is also useful if you want to
separate your packages from the system installed versions, or if you do not
have root access to the machine. Make sure that you have python3 and the
corresponding python3-virtualenv packages installed on your system. Also
make sure that you have some kind of MPI (OpenMPI or MPICH) installed with
your system package manager. Then:

	create a virtualenv and activate it.

	once inside the virtualenv, pip install the dependencies

Option #3

Use Anaconda. Download and install Miniconda or the full Anaconda distribution.
Make sure to install the Python3 version. If you are starting from Miniconda,
install the dependencies that are available through conda:

%> conda install -c conda-forge numpy scipy matplotlib mpi4py healpy pyephem

Using Configure

TOAST uses autotools to configure, build, and install both the compiled code
and the python tools. If you are running from a git checkout (instead of a
distribution tarball), then first do:

%> ./autogen.sh

Now run configure:

%> ./configure --prefix=/path/to/install

See the top-level “platforms” directory for other examples of running the
configure script. Now build and install the tools:

%> make install

In order to use the installed tools, you must make sure that the installed
location has been added to the search paths for your shell. For example,
the “<prefix>/bin” directory should be in your PATH and the python install
location “<prefix>/lib/pythonX.X/site-packages” should be in your PYTHONPATH.

Testing the Installation

After installation, you can run both the compiled and python unit tests.
These tests will create an output directory in your current working directory:

%> python -c "import toast.tests; toast.tests.run()"

Utilities

TOAST contains a variety of utilities for controlling the runtime environment, logging, timing, streamed random number generation, quaternion operations, FFTs, and special function evaluation. In some cases these utilities provide a common interface to compile-time selected vendor math libraries.

Environment Control

The run-time behavior of the TOAST package can be controlled by the manipulation of several environment variables. The current configuration can also be queried.

	
class toast.utils.Environment

	Global runtime environment.

This singleton class provides a unified place to parse environment
variables at runtime and to change global settings that impact the
overall package.

	
current_threads(self: toast._libtoast.Environment) → int

	Return the current threading concurrency in use.

	
function_timers(self: toast._libtoast.Environment) → bool

	Return True if function timing has been enabled.

	
get() → toast._libtoast.Environment

	Get a handle to the global environment class.

	
log_level(self: toast._libtoast.Environment) → str

	Return the string of the current Logging level.

	
max_threads(self: toast._libtoast.Environment) → int

	Returns the maximum number of threads used by compiled code.

	
print(self: toast._libtoast.Environment) → None

	Print the current environment to STDOUT.

	
set_log_level(self: toast._libtoast.Environment, level: str) → None

	Set the Logging level.

	Parameters

	level (str) – one of DEBUG, INFO, WARNING, ERROR or
CRITICAL.

	Returns

	None

	
set_threads(self: toast._libtoast.Environment, nthread: int) → None

	Set the number of threads in use.

	Parameters

	nthread (int) – The number of threads to use.

	Returns

	None

	
signals(self: toast._libtoast.Environment) → List[str]

	Return a list of the currently available signals.

	
tod_buffer_length(self: toast._libtoast.Environment) → int

	Returns the number of samples to buffer for TOD operations.

	
use_mpi(self: toast._libtoast.Environment) → bool

	Return True if TOAST was compiled with MPI support and MPI
is supported in the current runtime environment.

	
version(self: toast._libtoast.Environment) → str

	Return the current source code version string.

Logging

Although python provides logging facilities, those are not accessible to C++. The logging class provided in TOAST is usable from within the compiled libtoast code and also from python, and uses logging level independent from the builtin python logger.

	
class toast.utils.Logger

	Simple Logging class.

This class mimics the python logger in C++. The log level is
controlled by the TOAST_LOGLEVEL environment variable. Valid levels
are DEBUG, INFO, WARNING, ERROR and CRITICAL. The default is INFO.

	
critical(self: toast._libtoast.Logger, msg: str) → None

	Print a CRITICAL level message.

	Parameters

	msg (str) – The message to print.

	Returns

	None

	
debug(self: toast._libtoast.Logger, msg: str) → None

	Print a DEBUG level message.

	Parameters

	msg (str) – The message to print.

	Returns

	None

	
error(self: toast._libtoast.Logger, msg: str) → None

	Print an ERROR level message.

	Parameters

	msg (str) – The message to print.

	Returns

	None

	
get() → toast._libtoast.Logger

	Get a handle to the global logger.

	
info(self: toast._libtoast.Logger, msg: str) → None

	Print an INFO level message.

	Parameters

	msg (str) – The message to print.

	Returns

	None

	
warning(self: toast._libtoast.Logger, msg: str) → None

	Print a WARNING level message.

	Parameters

	msg (str) – The message to print.

	Returns

	None

Vector Math Operations

The following functions …

	
toast.utils.vsin(in: buffer, out: buffer) → None

	Compute the Sine for an array of float64 values.

The results are stored in the output buffer. To guarantee SIMD
vectorization, the input and output arrays should be aligned
(i.e. use an AlignedF64).

	Parameters

	
	in (array_like) – 1D array of float64 values.

	out (array_like) – 1D array of float64 values.

	Returns

	None

Random Number Generation

The following functions …

	
toast._libtoast.rng_dist_uint64(key1: int, key2: int, counter1: int, counter2: int, data: buffer) → None

	Generate random unsigned 64bit integers.

The provided input array is populated with values. The dtype of the
input array should be compatible with unsigned 64bit integers. To
guarantee SIMD vectorization, the input array should be aligned
(i.e. use an AlignedU64).

	Parameters

	
	key1 (uint64) – The first element of the key.

	key2 (uint64) – The second element of the key.

	counter1 (uint64) – The first element of the counter.

	counter2 (uint64) – The second element of the counter. This is
effectively the sample index in the stream defined by the
other 3 values.

	data (array) – The array to populate.

	Returns

	None.

Index

 C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | V
 | W

C

 	
 	critical() (toast.utils.Logger method)

 	
 	current_threads() (toast.utils.Environment method)

D

 	
 	debug() (toast.utils.Logger method)

E

 	
 	Environment (class in toast.utils)

 	
 	error() (toast.utils.Logger method)

F

 	
 	function_timers() (toast.utils.Environment method)

G

 	
 	get() (toast.utils.Environment method)

 	(toast.utils.Logger method)

I

 	
 	info() (toast.utils.Logger method)

L

 	
 	log_level() (toast.utils.Environment method)

 	
 	Logger (class in toast.utils)

M

 	
 	max_threads() (toast.utils.Environment method)

P

 	
 	print() (toast.utils.Environment method)

R

 	
 	rng_dist_uint64() (in module toast._libtoast)

S

 	
 	set_log_level() (toast.utils.Environment method)

 	
 	set_threads() (toast.utils.Environment method)

 	signals() (toast.utils.Environment method)

T

 	
 	tod_buffer_length() (toast.utils.Environment method)

U

 	
 	use_mpi() (toast.utils.Environment method)

V

 	
 	version() (toast.utils.Environment method)

 	
 	vsin() (in module toast.utils)

W

 	
 	warning() (toast.utils.Logger method)

 nav.xhtml

 Table of Contents

 		
 TOAST

 		
 Introduction

 		
 Data Organization

 		
 Workflow

 		
 Support for Specific Experiments

 		
 Installation

 		
 Compiled Dependencies

 		
 Python Dependencies

 		
 Option #0

 		
 Option #1

 		
 Option #2

 		
 Option #3

 		
 Using Configure

 		
 Testing the Installation

 		
 Utilities

 		
 Environment Control

 		
 Logging

 		
 Vector Math Operations

 		
 Random Number Generation

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

